
Published in the congress documentation for the Embedded Software Engineering Congress 2009

8
th

-10
th

 Dec. 2009, www.ese-kongress.de 1

Timing-Focused Design of Embedded Systems
Matthias Dörfel, doerfel@inchron.com
Tapio Kramer, kramer@inchron.com

Timing errors resulting from design faults are often discovered very late during the

development process. However, if during the system design the timing properties and

requirements (response times and latencies, resource utilization) are taken into

consideration, expensive re-designs can be reduced. This presentation describes an

approach whereby an UML model is extended to become a timing model which is

analyzed at an early stage by means of real-time simulation and analysis.

Motivation

With regard to the real-time behavior of embedded systems in particular, the system architect

has to cope with a dilemma: The timing behavior of the software to be implemented later

determines considerably how the system architecture is designed, which in turn has

implications for the timing behavior. Both affect fundamental questions such as the selection

of processors and bus systems and the partitioning of the software modules and their

distribution among tasks and processors.

For the functional architecture, it has been realized for a long time that a model-based

development process is the method of choice for mastering complexity. If, in addition to this,

a modeling technique is chosen which produces executable models even during the early

development phases, the function model can be simulated, verified and optimized.

The same advantages are offered by a real-time simulation of the real-time behavior of the

embedded system. In addition to the function model, a timing model is created by extending

the existing function model with timing and performance information [LOK]. Utilizing this

timing model, the architect can then argue his decisions by means of simulations and analyses

of the real-time behavior of the planned system architecture.

Modeling in UML

In the model-driven development process (Model Driven Design, MDD), the system is

developed using visual representations and the deployment of industrial standards such as

SysML or UML. Complex designs can be entered by the appropriate domain experts in the

presentation form familiar to them, which ensures that the required functionality will be

implemented. The models can be run during the design process. It is also possible to generate

a code which corresponds to the specification. Both ensure at an early point in time that the

required functions are provided and the required system reactions will occur.

Published in the congress documentation for the Embedded Software Engineering Congress 2009

8
th

-10
th

 Dec. 2009, www.ese-kongress.de 2

Functionality

Discover and

describe what

your System

shall do

Architecture

Design the

architecture

and evaluate

alternatives

Formal Behavior

Specify formal

behavior and

execute it to

validate

Interaction

Define how

system shall

react and

validate behavior

actor_0actor_0

System

usecas
e_1

class_2

object_01

object_11

object_01

11

state_0

state_1

state_2

ENV role_0

message_0()message_0()

message_1()

role_1

message_2()

message_3()

message_1()

message_2()

message_3()

Use Case Diagram Block Diagram

Sequence Diagram
State Chart

Figure 1: The modeling quadrathlon

The system is graphically modeled in four types of diagrams. The function model (e.g. in a

use case diagram) describes what is to be provided by the system. In the structure and block

diagrams the system architecture is expressed. The interaction of the system with the

environment and the communication between the system components is formulated by means

of a sequence diagram. It also shows the specified reaction of the components which can be

compared to the result of the simulation. The detailed behavior is specified in the state charts

and the activity diagrams. Often also the implementation can be created from this using a

code generator.

With these four diagram types, the system can be fully described with all its facets, which in

parts are independent of each other. Depending on the purpose of the system and the

application, they are often detailed to different degrees. For the real-time properties of the

system, in particular the architecture model, the interaction with the system environment and

the behavior specification are decisive. For this, attributes are added to these diagrams in

order to obtain the timing model.

Modeling of the timing behavior

The extension of the system model to form a timing model is basically carried out in three

areas: the description of the timing requirements of the functions, the distribution of the

functions to resources, and the definition of system activation.

By annotating the system parts with their net runtimes, the timing behavior of the functions

can be determined later from the functional behavior. These parameters are specified as

properties of the system parts.

The functions are distributed to the hardware resources (mapping or deployment) in order to

define which resource is used for running the function and is using up time there. For the

solution presented here, the mapping will be presented similar to SysML as a relation of

classes (tasks) to blocks (CPUs). The stereotype used for the CPU offers the option to

reference a processor model from the simulation library in the INCHRON Tool-Suite.

Essential parameters of these models are the RTOS working on this processor, its scheduling

as well as the details of the hardware and processor core. These parameters can also be

overwritten in the architecture diagram depending on the model.

Published in the congress documentation for the Embedded Software Engineering Congress 2009

8
th

-10
th

 Dec. 2009, www.ese-kongress.de 3

Stimulus

Ressource

Tasks

Figure 2: SysML mapping of tasks to processors

In order to model and simulate the dynamic reactions and the dynamic timing behavior of the

system, it must be defined how the system is activated from the outside. The activations of

embedded systems are usually realized as interrupts and received messages. Interrupts from

various sources can have different rates, and they may be correlated with each other. For

input, it is useful to continue using scenarios defined in the interaction diagrams. For this,

sequence diagrams, for example, are translated into interrupt sequences which can be further

varied in the INCHRON Tool-Suite. Furthermore, real-time requirements can be derived from

the diagrams which are automatically validated in the simulation.

The result of this addition is a UML real-time simulation model. In addition to the simulation

of the function behavior for early functional verification, the real-time behavior and the

system performance can be simulated and checked as early as during the architecture phase.

Simulation, analysis and optimization

The described additions of UML have been implemented in a profile in the IBM
®
 Rational

®

Rhapsody
®

 tool. In contrast to the SPT and MARTE profiles, this contains profiles only for

the most necessary stereotypes and types in order to keep the entry threshold low. In addition,

the profile also contains the code for code generators.

From the real-time simulation model in UML, Rhapsody automatically generates a project for

the real-time simulation and analysis with chronSIM. This project comprises an XML project

file and C code (a Task-Model [KOM]) for the detailed modeling of the system model in a

form which can be added by the user and which can be as close as desired to the target code.

UML real-time

simulation

model

Abstract Code
Delay, Eventchain…

Target Code

chronSIM

Project File

Figure 3: Rhapsody generates a Task-Model for real-time simulation with chronSIM

Published in the congress documentation for the Embedded Software Engineering Congress 2009

8
th

-10
th

 Dec. 2009, www.ese-kongress.de 4

For the simulation of the real-time behavior the Task-Model and all other information is used

to generate a executable simulation model. The user can, during the simulation, interactively

enter the defined activations into the simulations. The result is the presentation of all relevant

system events and their time of occurrence. This way the events and actions in the individual

microprocessors of the system can be evaluated with respect to time.

In the various diagrams of the INCHRON Tool-Suite simulation window the real-time

behavior of the system can be observed and analyzed. In the task state diagram it can be

observed precisely how the system parts, which have been allocated to tasks and interrupt

service routines, are activated depending on the system model and how they preempt each

other. If, as shown in Figure 4, a cyclical interrupt activates a task, this sequence is shown in

curves 1 and 2 in the diagram. An asynchronous, high-priority task can, however, block the

cyclical task for such a long time that the cyclical tasks are activated multiple times. This loss

of an activation is recognized by the real-time simulator and is marked in the diagram.

RTOS

Process States

Multiple Activation

Task Suspension

Figure 4: Task state diagram with asynchronous processes

The sequence diagram with an additional time axis (compared to the UML pendant) allows a

thorough analysis of the real-time processes. The time axis shows the simulation time for all

events. Every task and ISR is displayed with its own lifeline. By a different line width it is

symbolized whether the task or ISR is currently running. For every evaluated real-time

requirement the status is indicated with red and green boxes.

Summary

For the example of UML, a possibility is shown how an existing system specification can be

extended by a model of the temporal behavior of an embedded system. This allows the user at

a very early stage in the development process to evaluate the effects of his design decisions on

the real-time behavior.

This approach has been implemented as a profile in IBM Rational Rhapsody and is in use by

customers. The code generator mechanisms provided in Rhapsody automatically generate a

real-time simulation model. The time required for creating a further timing model in addition

to the function model is no longer required.

Published in the congress documentation for the Embedded Software Engineering Congress 2009

8
th

-10
th

 Dec. 2009, www.ese-kongress.de 5

Literature

[KOM] T. Komarek, M. Dörfel, R. Münzenberger; January 2007; Developing Real-Time

Constrained Embedded Software Using Task-Models; Advanced Automotiv Electronics

(AAE 2007), Gaydon; www.aae-show.co.uk

[LOK] M. Lokietsch; Juni 2009; Performance-Analyse von UML-Systemen; Fachkongress

Echtzeitentwicklung; München; www.echtzeitkongress.de

Author:

Matthias Dörfel, founder and director of INCHRON GmbH, studied computer science at the

Technical University of Munich and then garnered experiences with the development of

embedded systems as a hardware and firmware developer. The return to the university

environment as research assistant at the University of Erlangen-Nuremberg resulted in him

being introduced to the other founders of INCHRON GmbH during the DFG (German

Research Foundation) focus program.

IBM

®
, Rational

®
and Rhapsody

®
 are registered trademarks of the International Business Machines Corporation.

INCHRON
®
 and chronSIM

®
 are registered trademarks of INCHRON GmbH.

